If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+3x=97
We move all terms to the left:
3x^2+3x-(97)=0
a = 3; b = 3; c = -97;
Δ = b2-4ac
Δ = 32-4·3·(-97)
Δ = 1173
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{1173}}{2*3}=\frac{-3-\sqrt{1173}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{1173}}{2*3}=\frac{-3+\sqrt{1173}}{6} $
| 3/10(12x-16)=2/5(12-3x) | | -5+6r=-95 | | -1+5y+1=0 | | x^2+16x+81=0 | | 3=y−85/3 | | 1+5y+1=0 | | -49+4g=35 | | 9(r+3)=99 | | X^2+-8x+0=0 | | 3x-2=-7+9 | | 6w=45-3w | | 53+90+(2x+3)=180 | | 3t-2+t-5=-1 | | x^2=7x=1 | | 56+w=8w | | x^2+x+81=0 | | 2*x+5=x | | (x^2)-3.5x+39=0 | | (x^2)-3.5+39=0 | | -z+27=14 | | 7t-3=6(t+2) | | G=M2c2 | | 2+4y+5=0 | | 0=-16x+64x+80 | | t/13/4=41/2 | | 5.5x+3.4x=-11.04+4.1x | | x^2=3.5x-39 | | E=M2D56f | | 12x+10=65 | | 3l=5(l-6) | | 5x+3(-x)+2=2x+(-x)+10 | | q/2=21 |